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1. Introduction
Anthropogenic greenhouse gases (GHGs), particularly 
carbon dioxide (CO2), are the driver of rising global mean 
surface temperature, a trend which climate models pre-
dict may surpass 3.5°C higher than pre-industrial levels by 
2100 without additional mitigation efforts (IPCC, 2014). 

Limiting future global mean surface temperature rise to 
1.5°C could mitigate significant risks of climate change 
such as sea level rise, ecosystem stress and food security; 
however, achieving this goal will require reduction of CO2 
emissions to near net-zero within the next 30 years (IPCC, 
2018). Cities account for ~70% of global emissions (IEA, 
2008), and as urban populations grow by a projected 
2.5 billion people by 2050 (UN-DESA, 2014), cities are 
expected to play a major role in reducing carbon emis-
sions in coming decades.

Recent climate negotiations as part of the United Nations 
COP-24 meeting in Katowice, Poland have demonstrated 
global motivation to enact ambitious strategies to reduce 
GHG emissions (Plumer, 2018), leaving cities with signifi-
cant responsibilities to meet these goals. Numerous cities 
across the world have already pledged to reduce GHG emis-
sions, with programs such as the C40 Climate Leadership 
Group (C40 Cities, 2016), the Covenant of Mayors 
(Lombardi et al., 2014), and the U.S. Conference of Mayors 
(Wang, 2012) exemplifying cooperation across the globe. 
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This is especially significant in the wake of the U.S. decision 
to withdraw from the Paris Climate Accord, in which U.S. 
sub-national entities such as cities and states are bearing 
extra responsibility in upholding emission reduction strat-
egies (Tabuchi and Fountain, 2017; US Conf. Mayors, 2017).

Improved understanding of the urban carbon cycle is 
needed to independently evaluate emissions over time 
and to provide detailed guidance on potential urban 
emission mitigation opportunities. Mitigation and man-
agement techniques that focus on specific sectors or sub-
city domains can help uncover opportunities for energy 
efficiency and emission reduction actions (Salon et al., 
2010; Dhakal and Shrestha, 2010). “Bottom-up” emission 
estimates seek to achieve these goals via a collection of 
approaches such as direct flux monitoring, energy con-
sumption statistics and activity modeling; however, only a 
limited number of data products exist for urban domains 
which comprehensively distinguish activity sectors at very 
fine resolutions (Gurney et al., 2012, 2017; Newman et al., 
2016; Patarasuk et al., 2016; Gately and Hutyra, 2017; Bun 
et al., 2018). When bottom-up inventories are not avail-
able, researchers often need to rely on data products that 
downscale global/national estimates using spatial proxies 
(e.g. CDIAC, EDGAR, ODIAC). These global products are 
widely available, however, oftentimes the products are 
less resolved representations of local emissions behavior, 
which can misallocate emissions in time and space due to 
the spatial proxies used (Gurney et al., 2018; Gately and 
Hutyra, 2017).

Uncertainties unique to both bottom-up and global 
downscaling methods can be addressed and constrained 
with “top-down” (atmospheric) estimates, which infer 
emission patterns utilizing real-time measurements of 
concentrations and atmospheric transport models. Yet, 
top-down methods are prone to uncertainties that exist 
within atmospheric transport models (Peylin et al., 2011; 
Díaz Isaac et al., 2014), along with measurement repre-
sentation errors and inconsistent data availability (Gerbig 
et al., 2009; Lauvaux et al., 2012; Turner et al., 2016). 
To merge bottom-up and top-down methods, Bayesian 
inverse frameworks can provide a quantitative and rigor-
ous approach for flux estimation by pairing atmospheric 
observational constraints with spatial and temporal struc-
tures describing prior estimates and uncertainties in both 
fluxes and model-data relationships (Enting et al., 2002).

Flux inversion methodologies have long been used by 
the atmospheric science community (Tarantola, 1987; 
Enting and Mansbridge, 1989, 1991), aiding in flux esti-
mation for trace gases using a combination of data and 
transport models. Recent studies have applied these 
frameworks to examine GHG behavior over cities, provid-
ing top-down optimized emissions estimates of CO2 and 
methane (Sargent et al., 2018; Miles et al., 2017; McKain 
et al., 2012, 2015). In slight contrast to these frameworks, 
Bayesian-style approaches incorporate uncertainties 
of observations and fluxes as constraining inputs, and 
have been successfully applied over urban ground-based 
measurement networks to optimize existing bottom-up 
estimates of CO2 fluxes over Cape Town (Nickless et al., 
2018), Indianapolis (Lauvaux et al., 2016; Oda et al., 2017; 

Gurney et al., 2017; Turnbull et al., 2019), Paris (Bréon et 
al., 2015), and Davos (Lauvaux et al., 2013). Studies have 
also used aircraft campaign data as the atmospheric meas-
urements for urban inverse analyses over Los Angeles 
(Gourdji et al., 2018; Cui et al., 2015; Brioude et al., 2013) 
and Houston (Brioude et al., 2011, 2012), while satellite 
and ground-based data were used to analyze carbon fluxes 
over California (Fisher et al., 2017, Hedelius et al., 2018).

Given that the accuracy of inversion estimates is often 
not adequate to verify reported GHG emissions (National 
Research Council (NRC), 2010), recent studies have 
emphasized the exploration of underlying uncertainty 
covariance structures, which drive Bayesian inverse esti-
mates. Within these studies, specific attention has been 
paid to the correlation of prior emissions uncertainties in 
either the spatial (Wu et al., 2018; Lauvaux et al., 2016; 
Oda et al., 2017) or temporal dimension (Nickless et al., 
2018; Breon et al., 2015). However, the combination of 
space and time has yet to be formally examined within an 
urban anthropogenic CO2 inversion context. Similarly, cor-
relation of errors within the observation-model transport 
relationship (i.e. “model-data mismatch”) has seen limited 
experimentation using non-negligible off-diagonal cor-
relation terms (Lauvaux et al., 2016; Oda et al., 2017). In 
this study, we aim to further explore these structures by 
incorporating variations in both prior error and model-
data mismatch covariance matrices within an atmospheric 
inversion over Salt Lake City, Utah.

Salt Lake City lies at the northern end of the Salt 
Lake Valley, geographically positioned between the 
Wasatch and Oquirrh mountain ranges in northern Utah. 
Encompassing Salt Lake City and its surrounding metro-
politan area, the Salt Lake Valley (SLV) region is a rapidly 
developing urban area with a population of over 1 million 
people. Within the SLV, a number of stationary atmos-
pheric monitoring sites and mobile platforms constitute 
an extensive, long-standing network of CO2 measurements 
(Lin et al., 2018; Mitchell et al., 2018a, 2018b). To date, 
the sole inversion study using this network was by McKain 
et al. (2012), which matched modeled anthropogenic CO2 
enhancements with observed signals at 5 sites around the 
valley. However, no follow-up studies have taken advan-
tage of the SLV CO2 network for inverse analysis of carbon 
emissions. Because the Salt Lake Valley is one of a hand-
ful of urban regions (e.g. Indianapolis and Los Angeles) 
where extensive measurement networks have aligned 
with research interests to create a high-resolution emis-
sions data product (Patarasuk et al., 2016; Gurney et al., 
2012, 2017; Newman et al., 2016), a SLV Bayesian inver-
sion analysis can contribute towards a growing pool of 
urban studies that seek to better understand the urban 
carbon cycle.

As a preliminary assessment of the SLV inversion 
framework, we implement a “synthetic data” experiment 
in which known urban emissions are used to generate 
synthetic CO2 observations, which are then used in an 
atmospheric inversion to solve for emissions. Because 
the “true” emissions are known, synthetic data experi-
ments allow researchers to evaluate the impact of differ-
ent data/flux parameters on possible deviations from the 
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known answer. These studies, often referred to as observ-
ing-system simulation experiments (OSSEs), have been 
used by numerous researchers to explore uncertainties in 
various inversion frameworks (Wu et al., 2018; Turner et 
al., 2016; Kort et al., 2013; Wu et al., 2011; Gerbig et al., 
2006). Within the OSSE framework, no boundary in-flow 
or biogenic enhancements are considered, and transport 
is consistent within the model and synthetic data; thus, 
biases from these model components can be ignored, 
allowing us to better examine the underlying uncertainty 
structures in the inversions and their effects on model 
performance. In this OSSE study, we define a baseline 
configuration for model parameters and incorporate spa-
tially- and temporally-resolved prior uncertainty, along 
with spatial and temporal correlations of prior errors 
and component-level derivation of model-data mismatch 
error structures. Thereafter, we perform sensitivity tests to 
assess this baseline setup and examine covariance within 
prior uncertainty and model data mismatch error, as well 
as the relative influence of network measurement sites 
used in our study.

2. Methods
Our domain of interest follows the spatial bounds of Salt 
Lake County, which occupies the Salt Lake Valley and 
parts of surrounding mountains to the East and West 
(Figure 1). Salt Lake County encompasses six measure-
ment sites within the SLV CO2 observational network 
which are used in this study. Sites are shown in the domain 
map in Figure 1 and are labelled with their respective site 
codes – UoU (University of Utah), DBK (Daybreak), RPK 
(Rose Park), SUG (Sugarhouse), MUR (Murray), and SUN 
(Suncrest) (Lin et al., 2018; Mitchell et al., 2018a). As the 
focus of our inverse method, we solve for CO2 emissions 
at a fine-scale spatial resolution of 0.01° × 0.01°, resulting 
in a total of 2386 grid cells within our Salt Lake County 
domain. We adopt a temporal resolution of 6-hourly time-

steps corresponding to 0–6; 6–12; 12–18; and 18–24 UTC 
(local time is Mountain Daylight Time (MDT), equivalent 
to UTC-6 hours). Emissions are optimized starting from 
September 1, 18:00 UTC through September 30, 6:00 UTC, 
with a total of 114 time-steps which span over a roughly 
4-week window.

2.1. Emission Inventories
Two independent CO2 emission inventories are used as 
state vectors in the inversion (Section 2.3), one  acting 
as our prior estimate (primarily a global downscaling 
method), and the other as the set of “true” emissions 
(a bottom-up approach) which we aim to recover through 
optimization of the prior.

We use the 2016 version of the Open-source Data 
Inventory for Anthropogenic CO2 (ODIAC2016, Oda 
and Maksyutov, 2015) as the a priori input estimate for 
our inversion. ODIAC is a global high-resolution (1 km) 
monthly fossil fuel CO2 emission data product which is 
designed and developed primarily for global and regional 
tracer transport and inversion applications, but also has 
been used for several urban studies (e.g. Lauvaux et al., 
2016; Oda et al., 2017). ODIAC is based on downscaling 
of bottom-up CO2 emissions estimates using power plant 
emissions and geolocation information taken from the 
Carbon Monitoring and Action (CARMA) database (www.
carma.org), as well as satellite-observed nightlight data 
(Oda and Maksyutov, 2011; Oda et al., 2018). The native 
temporal and spatial resolutions of ODIAC are monthly 
and Arc 30 second respectively. Here, we use a temporal-
downscaling and re-gridding method described by Nassar 
et al. (2013) to scale the emissions to a 6-hourly temporal 
resolution and 0.01° grid resolution. CARMA point source 
geolocation used in ODIAC places various point sources 
at locations which are misaligned with their counterparts 
in Hestia after re-gridding ODIAC to 0.01°. These dif-
ferences are described in further detail in Gurney et al., 

Figure 1: Map of the Salt Lake Valley domain. The study domain in northern Utah is shown as the red box, with 
Salt Lake County represented by the unshaded region on the right. Yellow circles represent CO2 monitoring locations 
across Salt Lake County used in this study. DOI: https://doi.org/10.1525/elementa.375.f1
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(2018). Because inversion frameworks generally cannot 
correct these gridding discrepancies on their own, mis-
aligned point sources are manually re-located within our 
prior state vector to match locations in Hestia, and the re-
located grid cells are replaced with a mean inventory value 
solely for the purpose of this study. A map of afternoon-
averaged (18–24 UTC) ODIAC emissions with re-aligned 
power plants is shown in Figure 2a for the month of 
September 2015.

The Hestia-SLC v2018.01.24 fossil fuel CO2 emissions 
data product was defined as the “true” emissions within 
our synthetic data framework, due to its street-level 
granularity. The Hestia project consists of fine-scale 
mappings of CO2 emissions estimates using a bottom-
up approach for select cities across the U.S. (including 
Salt Lake City). Hestia-SLC is comprised of eight differ-
ent source sectors in Salt Lake County – Commercial 
(buildings and point), Industrial, On-road, Non-road, 
Railroad, Airport, Residential, and Electricity-production 
(Patarasuk et al., 2016; Gurney et al., 2012). Native grid 
spacing in Hestia is comprised of point, line and polygon 
sources, and are gridded for atmospheric modeling to 
0.002° (Figure 2b). For the purposes of this study, emis-
sions were re-gridded to 0.01° resolution, and the native 
hourly temporal resolution is used. Afternoon averaged 
Hestia emissions can be seen in Figure 2b over the same 
time frame as Figure 2a.

2.2. Model Transport
This study uses the Weather Research and Forecasting 
(WRF) model coupled with the Stochastic Time-Inverted 
Linear Transport (STILT) model to simulate atmospheric 
transport for this inversion (Lin et al., 2003; Nehrkorn 
et al., 2010). The domain setup and parameterization 
configuration used here is similar to that of Mallia et al., 
(2015), with the exception of the simulation time, which 
is set for September of 2015. WRF winds are used to drive 
an ensemble of 1000 STILT backward trajectories, which 
are released and traced backwards in time for 24 hours 
from each of the six site locations for all hours between 
September 3rd and 30th for a total of 4032 simulations. 
STILT has been widely used to interpret CO2 and other 
trace gases, including studies focusing on inverse mod-
eling methods (Lin et al., 2003; Lin and Gerbig, 2005; 
Mallia et al., 2015; Lin et al., 2017; Mallia et al., 2018; Fasoli 
et al., 2018). Turbulent dispersion within STILT is param-
eterized as stochastic motions within the backward trajec-
tories. These trajectories are then used to map the surface 
influence or “footprint” for each measurement time and 
location, quantifying the sensitivity of the observation to 
upwind source regions using units of concentration per 
unit flux (Lin et al., 2003).

Model transport acts as the linkage between grid-
ded emissions and individual observations; therefore, 
footprint receptors are selected to match afternoon 

Figure 2: Prior (ODIAC), “True” (Hestia), Posterior, and residual emission maps. CO2 emissions over Salt Lake 
 Valley are averaged for afternoon time-steps over the month of September 2015 (measurement sites denoted with 
black points). The 4 panels show: (a) Prior emissions (ODIAC), (b) True emissions (Hestia), (c) posterior (optimized) 
emissions and (d) emission corrections (posterior minus prior). Emissions are capped at ±15 μmol m–2 s–1 for visualiza-
tion. Posterior emissions retain prior spatial structure but adapt point sources and faint on-road emission structure 
from truth (Hestia) visible in panels (c) and (d). DOI: https://doi.org/10.1525/elementa.375.f2
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hourly-averaged observations from 12–17 local time 
(18–23 UTC), when the planetary boundary layer (PBL) 
is well-mixed within the valley at each of the six meas-
urement sites used. Within “real-data” contexts, analysis 
is generally limited by large uncertainties in model trans-
port outside of the afternoon, particularly from erroneous 
PBL height estimation. Here we adopt “real-data” conven-
tions by excluding non-afternoon times from our obser-
vations and footprints. To encompass the first 24-hour 
period of emissions in the state vector, receptor times 
begin 24 hours after the beginning of the emissions vec-
tor. A total of 1008 footprints/observations are initially 
composed of 6 sites each, with 6 afternoon hours over 
28 days (September 2, 18:00 UTC through September 30, 
23:00 UTC). Data and footprints are further aggregated to 
represent daily afternoon averages in order to minimize 
the influence of model biases in PBL height on the varia-
bility of data between hours, following “real-data” conven-
tions used in other urban studies (e.g. McKain et al., 2015; 
Miles et al., 2017). This method condenses data down 
to a total of n = 168 observations, using footprints aver-
aged over all 6 hours. Figure 3 shows monthly average 

footprint mapping for each of the measurement sites over 
the month of September 2015.

2.3. Bayesian Inverse Methods
Posterior emission estimates are optimized through the 
minimization of the cost function described by (Tarantola, 
1987) and (Enting, 2002):

( ) ( ) ( ) ( )1 11
 

1
2 2

TT
s p pL − −= − − + − −z Hs R z Hs s s Q s s  (1)

Where z (n × 1) is a vector of observed enhancements, 
H (n × m) is a Jacobian matrix of footprint values which 
relate the measurements to the state vector of unknowns 
(s (m × 1)), R (n × n) is a square and symmetric matrix 
describing the covariance of model-data mismatch errors 
(also referred to as observational errors), sp is the state 
vector of prior emissions, and Q (m × m) is a square and 
symmetric matrix describing the covariance of deviations 
between the true field s and prior field sp. In the context 
of matrix dimensions, n is equal to the number of con-
straining observations, and m is equal to the number of 

Figure 3: WRF-STILT footprint (influence) averages. (a) WRF-STILT footprints are shown on a log10 scale across SLV 
domain (shaded region) including all observation locations. Footprint average includes afternoon observation times 
only (18:00–23:00 UTC) for September 2015. (b) Time series of percent influence within Salt Lake County domain vs. 
number of hours back from start of backward trajectories, averaged over all footprints. DOI: https://doi.org/10.1525/
elementa.375.f3
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unknown grid cells in the state vector. For this study, m is 
equal to mt * ms where mt = number of timesteps (114) and 
ms = number of grid cells (2386).

The posterior best estimate of emissions, ŝ, is given as 
the solution to the above cost-minimization function:

      1
ˆ      

T T
p ps s HQ HQH R z Hs


     (2)

In addition, we construct the posterior uncertainty covari-
ance matrix Vŝ, given as:

      
1

ŝ    
T TV Q HQ HQH R HQ


    (3)

The solution to the cost function and resulting posterior 
uncertainty given above are solved following the compu-
tational methods described by Yadav & Michalak (2013), 
which express Q as a Kronecker product (explained in 
section 2.5) to solve for posterior fluxes at a significant 
cost reduction when the size of the state vectors (e.g. ŝ, 
sp, struth) become large. A minor variation of these methods 
is introduced when treating prior uncertainty as a spati-
otemporally heterogeneous vector, for which we utilize 
methods described by NOAA’s CarbonTracker-Lagrange 
software (www.esrl.noaa.gov/gmd/ccgg/carbontracker-
lagrange/). Further details on these computational meth-
ods are described in Text S-1 of the Supplemental Material.

2.4. Synthetic data framework
A key feature of this study is the use of synthetic data to 
drive corrections to the a priori estimate. The goal of this 
framework is to recover true emissions (Hestia) starting 
from the prior inventory (ODIAC). In order to achieve this, 
synthetic data are created which align with enhancements 
from the set of “true” emissions at all receptor locations 
and times, using footprints from the transport model to 
convert emissions to observed signals. Daily afternoon 
synthetic observations from 12–17 MDT are expressed as 
a single afternoon-aggregated observation for each site, 
where modeled signals from struth are obtained via convo-
lution with daily afternoon-averaged footprints (described 
in the H matrix). Random noise is then added to the syn-
thetic data, resembling possible “true” perturbations 
equal to the observational error described in the model-
data mismatch (R) matrix in section 2.5. The equation for 
synthetic data generation is given as:

  truthz Hs    (4)

where errors (ε) follow a Gaussian distribution with a 
mean of 0 and standard deviation equal to the standard 
error within the diagonal R matrix.

Because synthetic data are generated with an additional 
random component (ε), posterior estimates of emissions 
can vary due to random perturbations. To analyze inver-
sion results, we obtain expected posterior values by run-
ning a Monte-Carlo-style ensemble of 10,000 inversion 
iterations and taking the mean posterior best estimate. 
Details of this averaging method are given in Text S-2 of 
the Supplemental Material.

2.5. Error Covariance Parameters
As mentioned earlier, the prior error covariance (Q) 
matrix describes both the variance in prior emissions 
uncertainty and the spatial and temporal correlation 
of these uncertainties. Here we derive Q from three 
distinct components: spatial covariance (E), temporal 
covariance (D), and prior error variance (σ2), where the 
spatial and  temporal error covariance matrices are com-
bined via a Kronecker product, described as in Carbon-
Tracker-Lagrange  documentation (www.esrl.noaa.gov/
gmd/ccgg/carbontracker-lagrange/):

   Q I D E I    (5)

Under this method, Iσ is a diagonal matrix whose elements 
describe the uncertainty of prior emissions, defined here 
as the magnitude of difference between the prior and 
true emission inventories, with a minimum value of 1 
μmol m–2 s–1 assigned within the vector. The square of this 
uncertainty term (Iσ) in equation 5 comprises the prior 
error variance (σ2) component of Q. By this definition 
of Q, distinct uncertainty values are given to individual 
grid-cells for each time step in order to describe the het-
erogeneous nature of deviations between the prior and 
true emission inventories. Accurate representation of 
grid-level uncertainties is especially important in the real-
data context, as these parameters are largely responsible 
for the spatially-explicit nature of flux inversion correc-
tions. However, despite the challenging nature of assign-
ing grid-level uncertainties in both global downscaling 
and bottom-up methods (Andres et al., 2016; Hogue et al., 
2016; Hutchins et al., 2017; Gurney et al., 2018), within 
the context of our synthetic-data analysis we can assume 
Hestia gridded values to be “true” and therefore free from 
errors. Using this approach, we assume a prior uncertainty 
state vector for which each grid cell describes the devia-
tion between its prior and “true” values. Thus, uncertainty 
is here equivalent to the 1σ range, reflecting the absolute 
value of gridded differences between ODIAC and Hestia.

For the remaining components of Q, spatial and tem-
poral covariance matrices are defined using exponential 
decay equations as shown below:

  exp s

sl

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

X
E  (6)

  
exp

l
τ

τ

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

X
D  (7)

These matrices are computed using separation distances 
(Xs) and lag-times (Xt) between cells and timesteps respec-
tively, divided by their corresponding correlation range 
parameters ls and lt. Within the temporal correlation 
matrix, temporal correlation is assumed in fluxes across 
days only for time periods at equivalent hours of the day 
(non-matching times of day are considered uncorrelated 
and given a value of zero on the off-diagonal across the 
flux time domain). The correlation range parameters 
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defined here describe the distance and time at which 
errors in the prior emissions are considered uncorrelated.

In order to determine the extent of spatial and tempo-
ral variability within prior errors, we employ the use of 
two objective methods for defining these range param-
eters. To find the spatial length-scale ls, we fit a variogram 
using a mapping of the average afternoon difference 
in the ODIAC and Hestia emission inventories over Salt 
Lake County, determining the spatial length-scale to be 
approximately 6 km. To find the temporal length-scale lt, 
we analyzed the autocorrelation function of daily after-
noon-averaged inventory differences over the month of 
September 2015, finding the temporal length-scale to be 
equal to ~2 days.

These covariance parameters, while subtle, control the 
extent to which corrections to prior emissions propa-
gate or spread to neighboring grid cells and time steps. 
Despite particular attention given to these terms, known 
uncertainties exist due to downscaling methods used in 
the prior inventory (e.g., mis-specified point source geolo-
cation in ODIAC). Because of this, we assess the validity 
of each correlation parameter value by exploring the 
effects of length scale variability on posterior emission 
results in section 3.2. Figures and further explanation of 
length scale determination can be found in Text S-3 of the 
Supplemental Material.

The model-data mismatch matrix (R) describes errors 
relating the transport model to the observations, and can 
be expressed as the sum of uncertainties given as:

 part aggr transPBL transWIND

eddy instr bkgd bio

= + + +

+ + + +

R R R R R

R R R R
 (8)

Individual components of the model-data errors are sum-
marized in Table 1, and are described as follows:

Rpart is the error which stems from the release of a finite 
number of particles within trajectory ensembles. This 
value was determined following methods used in Mallia 
et al., (2015) but applied to the given emissions domain 
and found to be small (<0.1 ppm) given that a sufficiently 
large number of particles (1000) are released within STILT 

trajectory ensembles. Raggr is the error introduced in the 
model from aggregating spatially and temporally het-
erogeneous fluxes into single homogeneous cells and 
timesteps. Here we define this as the root mean square 
error (RMSE) of the difference between our chosen reso-
lution (0.01 deg/6-hourly) and available finer resolutions 
(0.002 deg/1-hourly).

Transport model error in WRF-STILT is broken down into 
components describing horizontal wind error (RtransWIND), 
vertical mixing-layer height error (RtransPBL), and unresolved 
eddy turbulence error (Reddy). RtransWIND is estimated by com-
paring sets of WRF-STILT runs that included wind error, 
which are assumed to follow a Gaussian distribution and 
are thus unbiased. These wind errors are then incorpo-
rated as additional stochastic motions (Lin and Gerbig, 
2005). The difference in variance between WRF-STILT sim-
ulated CO2 with and without wind errors are then used to 
estimate the impacts of transport errors.

RtransPBL is ideally constrained by comparing radiosonde 
measurements to WRF-modeled PBL heights; however, 
due to the lack of available radiosonde measurements in 
the afternoon over Salt Lake City, an approximated error 
of 7% mean enhancement was adopted from Gerbig et al., 
(2008) to represent errors using a high-resolution model 
for afternoon-only time periods. Finally, Reddy is accounted 
for within the above transport and aggregation errors and 
is neglected here.

Remaining errors in the equation (Rinstr, Rbkgd, and Rbio) 
do not pertain to our synthetic data approach, as physi-
cal instruments, boundary in-flow, and biogenic fluxes 
can be disregarded here, and are thus neglected in the 
 baseline case.

Model-data mismatch errors in inversion contexts are 
often considered statistically independent, which is prob-
lematic in that these errors are often temporally correlated 
with other errors within a time window. Here, we attempt 
to characterize these correlations by assigning error cor-
relations to the off-diagonal elements in Raggr, RtransPBL, and 
RtransWIND for hourly observations within each afternoon 
(but not across days or sites). Raggr and RtransPBL are consid-
ered to be fully correlated within each afternoon (as these 

Table 1: Description of components within the model-data mismatch matrix (R). All components are first given as 
hourly standard error (2nd column) and, if applicable, correlation is applied between same-day observations using 
a decay time-scale parameter (3rd column). Component errors are then aggregated to express observational error 
in enhancements that represent an average for a given afternoon (4th column). Standard error values (in ppm) are 
squared to express variance (in ppm2) in the R matrix. DOI: https://doi.org/10.1525/elementa.375.t1

Model-data  mismatch 
component

Hourly Standard Error Correlation Method Standard Error after 
 afternoon aggregation

Rpart 0.1 ppm (fixed value) uncorrelated 0.041 ppm

Raggr 16.7% and 25% of mean enhancement 
(spatial and  temporal aggregation)

correlated with no decay in 
same afternoon

1.176 ppm

RtransPBL 7% of mean enhancement correlated with no decay in 
same afternoon

0.197 ppm

RtransWIND 35% of mean enhancement correlated with decay 
 time-scale = 2.8 hours

0.881 ppm
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error components are not expected to be random within a 
given afternoon), while RtransWIND is given decaying correla-
tion with increasing time between observations, assum-
ing a correlation timescale of 2.8 hours as in Mallia et al. 
(2017). In this study we assume error to be constant across 
sites, and do not account for spatial correlation of meas-
urements between sites; however, it should be noted that 
in a real-data application, errors are likely to be correlated 
between towers, especially if separation distances between 
sites are small (as they are in this study area). Model-data 
mismatch errors are also likely to vary between sites based 
on a variety of factors such as instrument reliability, inlet 
height, local sources, and surrounding topography.

After hourly error correlations are applied, model-
data mismatch errors are aggregated to the daily scale 
for each measurement site. Details covering this aggre-
gation method are described further in Text S-3 of the 
Supplemental Material. The final standard error used here 
for observations across sites is 1.48 ppm, expressed on the 
diagonal of the R matrix as a variance of (1.48 ppm)2.

2.6. Sensitivity Analyses and Method Validation
In addition to our baseline case, we compare the results 
to a variety of sensitivity tests which evaluate parameters’ 
effects on model performance. In this analysis, we test 
the influence of spatial and temporal correlation range 
parameters (ls and lt), model-data mismatch variance, and 
the site array. Values and configurations for each model 
parameter are varied to encompass a wide range of model 
scenarios, and a summary of the tested parameters is 
given in Table 2. Results for these sensitivity analyses are 
discussed in section 3.

In order to evaluate the efficacy of the inversion 
model under certain parameters, we assess multiple 
measures of performance. Many possible measures exist 
which serve to validate atmospheric inverse models (see 
Michalak et al., 2017), and within this study we focus on 

a number of statistical validation methods that seek to 
verify the consistency of our assumptions within esti-
mates of prior and posterior emissions and their respec-
tive uncertainties.

Our primary validation method compares posterior emis-
sion estimates with the “true” emissions on an aggregated 
space- and time-domain scale, averaged over a sufficiently 
large number of synthetic data iterations. To obtain these 
values, grid-scale emissions are first averaged in time, and 
then weighted by grid cell area to average in space. Similar 
methods are used to determine error reduction by calcu-
lating prior and posterior uncertainty aggregated in space 
and time, with prior and posterior covariances included 
within this aggregation technique. Through this, we obtain 
a measure of the amount of uncertainty that is reduced as 
a result of our constraints on emissions. Further descrip-
tion of these aggregation methods can be found in Text S-3 
the Supplemental Material.

Modeled posterior observations, which are computed 
by multiplying footprints with posterior emissions, can 
be compared to synthetic data to evaluate model efficacy. 
Here we compute standard error (RMSE) and coefficient 
of determination (r2) between posterior and observed 
enhancements at each measurement site.

To assess the validity of posterior emissions given our 
prescribed error terms, we verify our results by calculating 
the reduced chi-squared value from our model residuals. 
Squared data and emissions residuals from our inversion 
are normalized by their respective variances in R and Q, 
and are expected to follow a chi-squared distribution with 
n degrees of freedom (among n + m residuals from data 
and emissions, respectively). A single reduced chi-squared 
value can be obtained by following the equation described 
by (Tarantola, 1987):

       2 1 1ˆ ˆ1 ˆ ˆ
TT

r p pz Hs R z Hs s s Q s s


         
 (9)

Table 2: Sensitivity tests performed for this inversion analysis. Bolded values denoted with an asterisk (*) indicate base-
line value from the inversion. Rdiagonal values here express standard error but are squared to express variance and are 
applied uniformly to the diagonal of R. DOI: https://doi.org/10.1525/elementa.375.t2

Parameter Values tested

ls 0, 1, 3, 5, 6*, 7, 8, 10, 20, 30 kilometers

lt 0, 1, 2*, 3, 5, 14, 30 days

Rdiagonal 0, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 10 ppm 

site network array S1* = UoU, RPK, DBK, MUR, SUG, SUN (all sites, baseline case)

S2 = RPK, DBK, MUR, SUG, SUN (UoU excluded)

S3 = UoU, DBK, MUR, SUG, SUN (RPK excluded)

S4 = UoU, RPK, MUR, SUG, SUN (DBK excluded)

S5 = UoU, RPK, DBK, SUG, SUN (MUR excluded)

S6 = UoU, RPK, DBK, MUR, SUN (SUG excluded)

S7 = UoU, RPK, DBK, MUR, SUG (SUN excluded)

S8 = RPK, DBK, MUR, SUN (UoU and SUG excluded)

S9 = RPK (all others excluded)
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where ν is the number of degrees of freedom, in this case 
equal to the number of observations in the inverse prob-
lem. A value of reduced chi-squared = 1 indicates align-
ment of residuals with their prescribed errors. Given that 
residuals are based on randomly-generated synthetic data, 
an ensemble of inversions must be generated in order to 
obtain an expected chi-squared value. Details of this calcu-
lation and computational limitations are discussed in Text 
S-1 of the Supplemental Material.

3. Results
We will first assess the agreement of posterior emissions, 
obtained using our baseline configuration, with Hestia, 
the reference set of true emissions. Further exploration of 
inverse model performance under varying conditions of 
spatial and temporal uncertainty, model-data mismatch, 
and observational network configuration are described in 
sections 3.2–3.4.

3.1. Model performance under baseline configuration
Figure 2c shows the posterior emissions (afternoon-
averaged) over the Salt Lake Valley. Spatial patterns 
of  optimized emissions still largely resemble those of 

the prior, with some additional point sources and on-
road activity recovered from the true emissions grid 
(Figure 2b). Posterior corrections (posterior minus prior 
emissions, Figure 2d) are mostly positive in the northern 
downtown region of the domain, and largely control cor-
rections to the prior at the domain-averaged scale. Differ-
ences between posterior and true emission maps can be 
seen in Figure S4 in the Supplemental Material. Figure 4 
shows the time series for temporally resolved emissions 
averaged over the total SLV spatial domain, with only 
afternoon emissions shown (corresponding to times of 
day which are constrained with synthetic data). Posterior 
emissions are generally closer to truth than prior; how-
ever, emissions are overestimated from September 8–16 
and even correct in the wrong direction, away from truth, 
from September 19–22 and 27–29.

Due to inherent loss of information from atmospheric 
mixing, along with properties of both the prior baseline 
emissions values and uncertainty structures prescribed 
within the Q and R matrices, we do not expect the result-
ing corrections to exactly reproduce the truth at precise 
time and space resolutions. We therefore analyze the opti-
mized results at the domain-aggregated monthly average 

Figure 4: Afternoon timeseries of prior, true, and posterior (optimized) domain-average emissions. CO2 emis-
sions are aggregated over SLV domain for all afternoon timesteps in September 2015 (timestep intervals are 6-hourly). 
Prior emissions averages are shown in blue, true emissions in black, and posterior (optimized) in red. Prior and pos-
terior emission uncertainties are displayed as light blue and orange shaded regions, respectively. September 19–22 
and 27–29 are shown in dashed gray boxes to highlight days when posterior emissions correct downwards (in the 
opposite direction of the truth). DOI: https://doi.org/10.1525/elementa.375.f4
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scale, inferring a single value of net emissions over the 
Salt Lake County domain for September 2015. Using 
Monte Carlo methods described in section 2.4 and text S-2 
of the Supplemental Material, the expected value of pos-
terior emissions aggregated over the afternoon domain 
is 4.63 ± 0.03 μmol m–2 s–1, which compares favorably to 
the true emissions (4.63 μmol m–2 s–1) relative to the prior 
emissions (3.97 μmol m–2 s–1). The standard error of the 
average estimate, 0.03 μmol m–2 s–1, is less than 1 percent 
of true emissions. The corresponding afternoon domain-
averaged posterior uncertainty reduction for the baseline 
case is 39.32%. Maps of prior uncertainty and uncertainty 
reduction (both in afternoon) are shown in Figure 5. It 
should be noted that within this synthetic data context, 
true emissions are known; thus, uncertainty reduction 

should be used solely as a comparison metric between sce-
narios of this inversion and is a statistical measure of the 
information content gained from the constraining inputs 
and uncertainties.

Despite strong agreement in the afternoon at the 
spatially and temporally averaged scale, constraining 
influence from afternoon footprints diminishes when 
moving backwards in time throughout the day (Figure 3b). 
Consequently, morning hours which are intentionally 
unconstrained (i.e. 6–12 local time) retain some residual 
influence from afternoon footprints and are corrected 
to some degree. However, these corrections are based 
solely on the prior-true difference in the afternoon, giv-
ing overestimated emissions for the time period (ŝ = 3.63, 
sp = 3.54, and struth = 3.52 μmol m–2 s–1). Further back from 

Figure 5: Prior uncertainty and uncertainty reduction maps. (a) Prior emissions uncertainty over SLV (afternoon 
average, September 2015), capped at 30 μmol m–2 s–1 for visualization. Uncertainty is defined as the absolute differ-
ence between ODIAC and Hestia at the 0.01° grid-cell level, with a minimum uncertainty of 1 μmol m–2 s–1 per cell. 
(b) Percent uncertainty reduction from prior after baseline inversion run (afternoon average, September 2015). Most 
uncertainty reduction occurs in the north of SLV where observation sites are concentrated. Observation sites are 
denoted by black diamonds in both figures. DOI: https://doi.org/10.1525/elementa.375.f5
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the afternoon (i.e. 0–6 and 18–24 local time bins), no 
more than 10% of corrective influence remains within the 
domain, and posterior emissions revert to the prior. As a 
result, emissions averaged over all hours of day (ŝ = 3.64, 
sp = 3.45 and struth = 3.39 μmol m–2 s–1) also reflect differ-
ences in prior and true emissions from the constrained 
afternoon timeframe and are not as accurate a depiction 
of inversion performance as afternoon emissions.

Prior, observed and posterior enhancements at each site 
are shown in Figure 6. Similar to afternoon emissions, 
the prior enhancements (blue) often underestimate the 
observed “true” signal (black). Posterior corrections to the 
prior enhancements (red) align closely with the observed 
enhancements in general, and misalignments between 
observed and posterior signals are generally limited to 
instances at the RPK site when prior signals switch from 
underestimation to overestimation, and vice versa (i.e. 
when blue and black lines cross). This is likely due to the 
lag effect of the emissions corrections due to temporal 
correlation of posterior corrections.

The expected value of reduced chi-squared value of 
fit for the baseline case is equal to 0.92. While this is 
slightly lower than the ideal value of 1.0, this represents 
relatively good fit of residuals to error matrices. As noted 
by Nickless et al. (2018), a reduced chi-squared value < 1 
indicates that prior flux covariance and model-data mis-
match errors may be overestimated. This could potentially 
be explained by the assignment of small modifications to 
the prior uncertainty structure (e.g. assigning a floor value 
of 1 μmol m–2 s–1).

3.2. Effects of spatial and temporal correlation on 
additive corrections
Results of sensitivity analyses on temporal and spatial 
correlation parameters are shown in Figures 7 and 8. 
Increasing correlation length, ls, as shown in Figure 7, 
results in additional spread in the spatial extent of uncer-
tainty reduction. With small length-scales (e.g. ls = 0 km), 
isolated areas of correction (and therefore high uncer-
tainty reduction) are present immediately surrounding 

Figure 6: Modeled observations (prior, posterior, and synthetic) at two sample sites. Derived afternoon CO2 
enhancements are calculated using WRF-STILT footprints multiplied by prior, posterior, and (for synthetic data) “true” 
emissions. Results are shown for each measurement site with prior enhancements in blue, synthetic enhancements 
in black, and posterior in red. Synthetic and posterior observations are expressed as an average of an ensemble of 200 
inversion runs, with the standard deviation of their observations shaded in gray and orange, respectively. September 
19–2 and 27–29 are shown in dashed gray boxes to showcase abnormal behavior at the RPK site, when prior enhance-
ments are higher than synthetic data values. DOI: https://doi.org/10.1525/elementa.375.f6
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the observational sites, despite lower domain-scale uncer-
tainty reduction at these length-scales (Figure 8a). In 
contrast, larger length-scales show widespread reduction 
without such concentrated spikes around observational 
sites (Figure 7). Overall reduction in uncertainty increases 
when applying larger length scales, reflecting increased 
spread of corrective power to distant neighboring grid 
cells. The same effect is seen in the correlation time scale, 
where increasing time scale values show temporal spread-

ing of corrections to neighboring days, strengthening the 
corrective trend (Figure 8b). As can be inferred here, mis-
specification of spatial and temporal correlation scales 
may result in biased posterior emissions, where optimized 
emissions are overly influenced by strong trends in the 
difference between observations and prior-modeled 
enhancements.

An additional inversion run was generated using a 
setup that neglects both spatial and temporal correlation 

Figure 7: Uncertainty reduction maps with varying spatial correlation length scale (ls). Maps are shown for 
ls = 0, 3, 10, and 30 km. Uncertainty reductions are averaged over September 2015. At small length scales (top panels) 
uncertainty reduction is confined to small areas of high reduction surrounding observation sites, whereas at larger 
length scales (bottom panels) uncertainty reduction is more widespread across the county domain. DOI: https://doi.
org/10.1525/elementa.375.f7

Figure 8: Space- and time-averaged CO2 emissions vs. spatial and temporal correlation length scales (ls and 
lt). Afternoon domain-averaged CO2 emissions (with shaded posterior uncertainty) are shown at (a) increasing spatial 
length scales and (b) increasing temporal length scales. Results from baseline configuration are marked by vertical 
lines. At small length scales for both parameters, posterior emissions underestimate the “truth”, while larger length 
scales show overestimation. DOI: https://doi.org/10.1525/elementa.375.f8
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in prior errors (ls = 0 km, lt = 0 days). This configuration 
yields afternoon-averaged posterior emissions equal to 
4.16 μmol m–2 s–1, which underestimates the true after-
noon grid-averaged emissions by nearly 0.5 μmol m–2 s–1. 
It is thus apparent that given the prior (ODIAC) and true 
(Hestia) emissions used here, neglecting either spatial or 
temporal correlations in prior errors results in significant 
underestimation of optimized emissions.

3.3. Model-data mismatch error influence on inversion 
performance
Mis-specified model-data mismatch errors also have 
potential to introduce bias in posterior emissions esti-
mates. Figure 9 shows comparisons of posterior emis-
sions and uncertainty reduction to model-data mismatch 
error on the diagonal of the R matrix. Results show the 
expected behavior that with increasing uncertainty in the 
model-data relationship, correction to the prior dimin-
ishes. While this analysis does not consider any sort of 
systematic bias in the observations themselves, it asserts 
that underestimations of the model-data mismatch error 
result in misleadingly high reduction in uncertainty and 
overly-confident corrections to the prior (which are not 
necessarily correct) given observed enhancements with 
normally-distributed errors. Following this, overestima-
tion of model-data mismatch error results in a posterior 
estimate that remains closer to the prior, limiting the 
model’s capability to provide full correction to match the 
true emissions.

It should be noted that within this sensitivity analysis, 
model-data mismatch errors drive the magnitude of ran-
dom perturbations (which follow a normal distribution) in 

the “true” signal, and thus analysis of these observational 
errors reflect increasingly varying synthetic observations. 
The calculated χr

2 value of the baseline case (0.92) is less 
than 1, suggesting that prescribed uncertainties in R and 
Q may be slightly overestimated. However, as noted by 
Michalak et al. (2005), a χr

2 = 1 metric is not in itself a 
comprehensive indicator of properly estimated covariance 
parameters. Additionally, “true” anthropogenic enhance-
ments are no longer known in a real-data case (due to 
uncertainty in boundary conditions), leaving it up to the 
modeler to estimate any errors or systematic biases intrin-
sic to the model-data relationship. While not performed in 
this study, a potential additional method to quantify error 
covariance parameters in R, as well as Q, is via Restricted 
Maximum Likelihood estimation (Michalak et al., 2005). 
This method uses a top-down approach to optimize 
parameters in R and Q given a degree of prior knowledge 
about their underlying structures. Because the defining 
parameters and underlying structures of these covariance 
matrices are generally unknown and can have significant 
uncertainties, this method may act as a strong verification 
tool in future work.

3.4. Relative leverage of specific sites on emissions 
estimates
Within our synthetic data framework, we are able to 
assume 100% data availability at each observational site 
within our network. However, in the real world, routine 
maintenance of supporting instruments and hardware 
often prevents this from being the case. Thus, the final 
portion of this analysis focuses on the leverage that indi-
vidual monitoring sites within our observational network 

Figure 9: Space- and time-averaged CO2 emissions and uncertainty reduction vs. model-data mismatch error. 
(a) Domain-average CO2 afternoon emissions and (b) uncertainty reduction percentages are plotted for scenarios 
using different values of model-data mismatch standard error (square root of the R matrix diagonal). Posterior emis-
sions in (a) are shown in blue (with posterior uncertainty shaded) and are compared against prior (ODIAC) and “true” 
(Hestia) averages, dotted in black and violet, respectively. Posterior emissions begin to underestimate the truth as 
errors increase, approaching the prior average value at high error values. Uncertainty reduction in (b) is shown in 
green for afternoon-only timesteps (18–23 UTC) and in yellow for all timesteps combined (0–23 UTC). Uncertainty 
reduction is highest at ~60% in afternoon with no prescribed model-data mismatch error but approaches 0% as pre-
scribed error increases. Results from baseline configuration are marked by vertical lines in both figures. DOI: https://
doi.org/10.1525/elementa.375.f9
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have on the performance of the inversion. Using these 
results as guidance, future inversion studies over the SLV 
network may be better equipped to interpret the behavior 
of different sites’ data, and to identify time periods with 
maximally-informative data availability. Table 3 describes 
results of various iterations of the inversion performed 
with specific sites removed from the observational net-
work. Sites whose removal results in a large change in 
domain-averaged emissions (e.g., UoU, SUG) contribute 
significantly to the corrective magnitude of the inversion, 
whereas sites whose removal results in significantly less 
uncertainty reduction (e.g. DBK) have more independent 
and unique upwind influence regions. It should be noted 
that if each site contributed equally and independently to 
the total uncertainty reduction (~39%), each site’s uncer-
tainty reduction would be ~6.5%. This is, however, not 
the case, indicating that a degree of overlap exists among 
sites’ footprints. DBK comes closest at 6.17% and thus 
provides the largest degree of independent information 
of all sites, due to its isolated location and unique foot-
print over the western domain (Figure 3). Small changes 
to overall uncertainty reduction (<1%) indicate that a 
given site’s contribution to the information content of 
the inversion is less unique relative to other sites’ con-
tributions. The UoU and SUG sites are examples of sites 
that exhibit low changes in uncertainty reduction; how-
ever, their combined removal results in a much larger loss 
of information to the inversion because their combined 
footprint covers a unique region within the geographical 
domain. Thus, neither site is individually imperative for 
the information network of the study, but their combined 
information content is needed for maximum performance 
of the inversion. While it is clear that all six measurement 
sites are needed to maximize the information content 
from an inversion over Salt Lake City, the relative contri-
butions found here can serve as a guide to the utility of 
each site in a real data inversion context where data avail-
ability is less consistent.

3.4.1. Bias introduced from proximity to point sources
A useful outcome of the network analysis is the ability 
to monitor unexpected behaviors in the optimized pos-
terior with changing site network configurations. Here 
we examine more closely the time periods of September 
19–22 and 27–29, when valley-averaged emissions appear 
to overshoot and are corrected downwards despite true 
emissions being higher than the prior (see Figure 4). In 
contrast to these periods, we compare with September 
8–16, where the posterior corrections notably overesti-
mate the truth on the valley-average.

To investigate this anomalous behavior specifically 
from the underestimation period, we note that exclusion 
of the RPK site in the network sensitivity analysis is the 
only configuration that does not see this period’s under-
estimation biases. RPK site is unique among the six sites 
in being located within <5 km of four high-emitting point 
sources (according to Hestia), suggesting that a significant 
degree of hyper-local behavior may influence this site. As 
shown in Figure 6, large positive differences in observed 
vs. prior enhancements at RPK align with systematic after-
noon over-correction in emissions from September 8–16. 
While the true signal is generally larger than prior at other 
northern sites, it is smaller than prior at RPK between 
September 19–22 and 27–29, aligning with underesti-
mation of true emissions over the valley average (boxed 
 portions of Figures 4 and 6).

To explore the linkage between these phenomena and 
uncover their driving behaviors, we examine the afternoon 
mean CO2 contribution maps for these two time periods at 
the RPK site (Figure 10), detailing the gridded contributions 
to true and prior CO2 enhancements (footprints multiplied 
by emissions) in upwind source regions. During September 
8–16, the RPK site’s highest contributing grid cell from the 
true emissions is a point source located just south of the 
site. This same cell, however, exhibits almost no contribu-
tions from the true emissions during the September 19–22 
and 27–29 periods. Prior and true enhancements are 

Table 3: Inversion results with measurement sites (far-left column) excluded sequentially. Averages are computed for 
afternoon times only and are averaged over the entire Salt Lake County domain for the month of September 2015. 
Posterior uncertainty is expressed as Vŝ aggregated over afternoon times and full spatial domain. The change in 
uncertainty reduction for each configuration is relative to the baseline simulation (row 1), which has an original 
uncertainty reduction of 39.32%. DOI: https://doi.org/10.1525/elementa.375.t3

Excluded sites Posterior CO2 
 Emissions (Average) 

[μmol/(m2 s)]

Posterior minus True 
CO2 Emissions (Average) 

[μmol/(m2 s)]

ΔUncertainty 
Reduction 

[%]

None 4.64 0.00 –

UoU 4.55 –0.09 –0.90

DBK 4.50 –0.13 –6.17

RPK 4.69 0.05 –3.98

SUG 4.52 –0.12 –0.43

MUR 4.70 0.06 –3.51

SUN 4.62 –0.01 –2.27

UoU & SUG 4.24 –0.39 –3.88
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driven by the same transport, which infers that temporal 
differences in the proportional contributions must there-
fore be driven by temporal variability in footprints or the 
emissions themselves. However, because footprints aver-
aged over each period do not display large differences in 
upwind source regions (see Figure S5 in the Supplemental 
Material), variability in emissions are the most likely cause. 
Indeed, the lower panel of Figure 10 shows that this par-
ticular source, identified as the Gadsby power plant, experi-
ences large variations within the month. These variations 
align with the temporal patterns in RPK’s prior and true 
enhancements, as well as over- and under- estimations of 
posterior emissions from truth on the valley-average. The 
coincidence of these enhancements and domain-average 
biases enforces the idea that point sources can be a driving 
cause of biased behavior in the posterior emissions.

This naturally leads to the question: what can be done 
to mitigate the model bias at smaller temporal sub-scales 
introduced from a site like RPK? The answer hinges on 
whether the cause is due to misspecification of prior 
error covariance (Q), or of the model-data mismatch error 
(R). To explore this question, we examine results of addi-
tional model configurations to test if these biases can 
be addressed while preserving the baseline’s agreement 
with the truth. Two model configurations are run in addi-
tion to baseline and RPK-excluded setups: one with prior 
uncertainty of four nearby point sources reduced to 10% 
of original in the Q matrix (variation A), and one with 4 
ppm of additional error introduced to RPK observations 
in the R matrix (variation B). Time series of spatially-
averaged emissions from these variations are compared 
in Figure 11, showing that during the September 19–22 

Figure 10: Signal contribution to the RPK site during two distinct periods, shown with emission time series 
from an influential nearby point source. Maps of average gridded contribution to prior and true CO2 signals at 
the RPK site are shown for September 8–16 (left column) and September 19–22, 27–29 (right column). A prominent 
point source is identified in the circled grid cell and the time series of emissions at the grid cell are shown below 
for the month of September 2015. Respective time periods are shown in the emission maps by dotted boxes in red 
(September 8–16) and violet (September 19–22, 27–29). DOI: https://doi.org/10.1525/elementa.375.f10
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and 27–29 periods, the underestimations are actually 
amplified from baseline in the reduced sigma case. In 
contrast, these underestimations are minimized with 
additional error applied to RPK observations; afternoon 
domain-averaged emissions from variation B are equal to 
4.64 μmol m–2 s–1, maintaining close alignment with the 
true afternoon average (4.63 μmol m–2 s–1).

The reduced bias from increasing RPK observational 
error supports the notion that the biases introduced by 
the RPK site originate in the large enhancements from 
nearby point sources, rather than these sources’ pre-
scribed uncertainty. Thus, despite true emissions being 
consistently higher than prior, the posterior is lower than 
prior during September 19–22 and 27–29 because of the 
corrections driven by these periods’ low signals from truth 
relative to prior at the RPK site.

Interestingly, RMSE between posterior and “true” 
enhancements is lowest at RPK of all sites (Table S-1 in 
the Supplemental Material), showing that this is not an 
indicator of bias introduced to the flux space. In this 
case, adjustment of the site’s error to “de-weight” obser-
vations proportional to other sites (basically attempting 
to increase RMSE between data and posterior signals) is 
one way to address concerns of hyperlocal enhancements 
disproportionally correcting emissions across the domain. 
The quantity of or extent to which error should be applied 
to this site (or similar sites within other domains) depends 
on the degree to which the bias introduced skews poste-
rior emissions over the space and time domain in ques-
tion. Thus, we are limited here by our chosen domain, as 

a single month is likely too limited a time scale to make 
accurate assertions about both the level of bias present in 
domain-averaged emissions and the appropriate error to 
assign to observations at this site.

Following the conclusions of Turner et al. (2016), a 
denser array of observational sites is likely to simultane-
ously reduce the bias in corrections introduced from the 
RPK site as well as minimize the information content lost 
from de-weighting these observations. This suggests that 
the SLV observational network could significantly benefit 
from additional receptors such as mobile measurements 
described in Mitchell et al. (2018b). Given the current 
functional network in this study with only six sites, we 
still seek to take optimal advantage of all available data, 
including those from the RPK site which ultimately con-
tribute valuable information content to the inversion. 
Seeing as the RPK-excluded set-up is essentially a scenario 
which assigns infinite error to these observations, the 
appropriate additional error to minimize bias depends on 
the nature and magnitude of influence from surrounding 
point sources, as well as the density of remaining meas-
urement sites.

3.5. Limitations
While the synthetic data inversion setup is useful in that 
it allows us to examine more closely the errors within 
our model, some limitations exist in the extent to which 
these findings can be fully applied to a real-data context. 
As mentioned earlier, the measures which are used here 
to justify the accuracy of optimized posterior emissions 

Figure 11: Afternoon timeseries of prior and true domain-average emissions, compared to baseline and four 
additional model scenarios. CO2 emissions are in the same format as Figure 4, comparing baseline posterior (red) 
to additional scenarios. Scenario A is the same as baseline, but with uncertainty at four point sources surrounding 
RPK reduced to 10%. Scenarios B and C are the same as baseline, but with 2 ppm and 4 ppm RMSE, respectively, 
added to RPK observations on the R diagonal. The RPK-excluded scenario is same as baseline but with RPK removed 
from observations (only 5 sites used). RPK-excluded emissions do not exhibit negative corrective bias within the grey 
shaded columns; Scenarios B and C minimize this bias from baseline, and Scenario A shows exaggerated bias. DOI: 
https://doi.org/10.1525/elementa.375.f11
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are limited to some degree by our selection of temporal 
domain. The time frame used here represents a month-
long snapshot of emissions at 6-hourly resolution, over 
which variations in emissions could differ from other 
time periods at different scales. This month-long “snap-
shot” aspect of the chosen time domain limits our abil-
ity to quantify the magnitude of bias introduced by the 
interaction between the chosen site network and the 
true emissions field. Ideally, the observational network of 
an urban inverse study should be dense enough to cap-
ture all hyperlocal emissions activity that occurs within 
the domain; however, emission optimization using this 
Bayesian inverse framework is only as accurate as site 
network density and model transport allow. While base-
line results presented here exactly match “true” emis-
sions during the constrained period, this value is sensi-
tive to the flux timespan and specific site configuration 
and could likely change if viewing over a different month 
or site network.

Another limitation of this study is the simplification of 
synthetic data, which are generated using model trans-
port that is consistent with that used in the inversion. 
Realistically, data are prone to potentially large additional 
errors in biogenic CO2 signals (from flux estimates and 
transport) and other boundary conditions. These errors 
(along with horizontal and vertical transport errors) may 
be prone to systematic biases that are unknown and likely 
difficult to quantify. Correlation of observational errors 
both in time and space (i.e. between measurement sites) 
may be unknown or ambiguous as well, and within the 
fluxes themselves, a level of uncertainty exists in the 
methods used to determine spatial and temporal length 
scales. For these reasons, applying this framework to 
real-data contexts (especially over other urban domains) 
would necessitate additional considerations regarding 
unresolved uncertainties.

4. Conclusion and Discussion
In this study, we describe methods used to produce opti-
mized emissions within a synthetic data framework, with 
emphasis on quantifying prior error covariance length 
scales and observational uncertainties. Expected after-
noon averages from domain-averaged output closely 
match those of prescribed “true” emissions, with a stand-
ard error of about 0.03 μmol m–2 s–1 (less than 1% of the 
aggregated emissions). Domain-averaged uncertainties 
of afternoon emissions were reduced by around 39%. 
Emissions were constrained only during the afternoon 
(18–23:00 UTC), excluding other times due to concerns 
of large observational/transport uncertainties outside of 
these times. Our ability to correct for non-afternoon emis-
sions given these constraints is limited based on these 
errors and results in a loss of around 50% information 
content when not isolating the constrained afternoon 
times from results. As previous synthesis reports and stud-
ies (e.g. NRC, 2010; McKain et al., 2012) have suggested, 
column-based constraints on emissions may be one way 
to strengthen the information content of the inversion, 
due to the decreased sensitivity of column-based signals 
to errors in the PBL height, which remains a significant 
modeling challenge outside the afternoon.

Proper estimation of correlation range parameters is 
proven to be important in this study in order to produce 
results in agreement with true emissions. We show here 
that neglecting spatial and/or temporal correlation, in 
the context of the given domain and prior/true emissions 
vectors, greatly limits the corrective power of the inver-
sion model and results in poor agreement with true emis-
sions. Spatial and temporal correlation of prior errors 
result in a degree of corrective spreading from areas 
with large influence/uncertainty into neighboring cells; 
however, when estimates of correlation range param-
eters are set too high, overcorrection can take place. 
Thus, objective determination of these parameters is 
highly recommended for optimizing model efficacy. One 
approach mentioned but not implemented in this study 
is Restricted Maximum Likelihood estimation, which 
could be a valuable tool to aid in determining covariance 
parameters for future studies.

Varying levels of model-data mismatch error are found 
to be a factor in introducing biases into the optimized 
emissions based on this synthetic data approach with nor-
mally-distributed random errors in observed CO2 enhance-
ments. This study provides a comprehensive breakdown of 
total observational uncertainty which thoroughly assesses 
most components of error; deviating from this estimate 
of error was shown to compromise agreement with true 
emissions given the normally-distributed random pertur-
bation method used in this study.

For future inverse analyses involving the Salt Lake 
Valley measurement network used here, we have shown 
that the DBK site contributes the most unique and inde-
pendent information for constraining emissions. We have 
also noted the overlapping influence of the UoU and 
SUG sites. Overall, our network of sites displays sufficient 
spread in influence from upwind areas for the purpose of 
this analysis, but further work is needed to quantify gaps 
in information content resulting from unused locations 
within the urban domain where potential future sites 
could contribute to more effective inversion analyses.

Within this site network analysis, point sources are 
shown to have powerful influence on nearby sites, as is 
exemplified at the RPK site where large differences in 
prior and true signals propagated strong biased correc-
tions across the emissions domain at certain times of the 
month. Increasing model-data mismatch error for RPK-
specific observations is shown to reduce this bias without 
significantly compromising agreement with “true” emis-
sions. While the spatial recoverability of missing point 
sources is shown to be adequate based on the setup used 
here, the location and magnitude of missing point source 
emissions are rarely known a priori in the real world. Thus, 
while recoverability is inherently limited by the resolu-
tion of emissions and transport models, as well as prior 
estimates of gridded uncertainty, further exploration of 
site network density and error covariance structures (e.g. 
using Maximum Likelihood Estimation or non-exponen-
tial spatial correlation to estimate Q) is needed to iden-
tify best practices for recovering missing point sources. 
Additionally, a multi-pronged approach to reducing 
bias from nearby point sources would also include the 
improvement of point source definitions within urban 

D
ow

nloaded from
 http://online.ucpress.edu/elem

enta/article-pdf/doi/10.1525/elem
enta.375/435045/375-6436-1-pb.pdf by guest on 16 August 2022



Kunik et al: Bayesian inverse estimation of urban CO2 emissionsArt. 36,	page 18	of	22		

emission bottom-up data products. While global emission 
inventories do not specifically cater to high-resolution 
urban inversion analyses, adoption of more comprehen-
sive point source allocation (which are sometimes avail-
able for individual cities or nations) in global inventories 
such as ODIAC will likely better suit them for future urban 
inversion applications.

Data Accessibility Statement
Source code in R, sample input files, and select sample 
footprints are uploaded as online supporting information 
at https://github.com/lkunik/bayesian-osse-R-sample/. 
Updates and modifications to the code are ongoing, and 
contributions to the code framework are welcome and can 
be initiated by pull request. The version of software ref-
erenced for this study at the time of publication can be 
found here: https://doi.org/10.5281/zenodo.2655990. 
Questions about the code and files can be directed to the 
corresponding author.
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